8D-4 : | 2nd Law Efficiency and Lost Work in an Air Compressor | 6 pts |
---|
For the compressor shown below, calculate : | |||||||||||||||
|
|||||||||||||||
a.) The actual, reversible and lost
work in kW b.) The 2nd Law efficiency Assume air behaves as an ideal gas and the temperature of the surroundings is 310 K. |
|||||||||||||||
Read : | We can calculate the isentropic work requirement of the compressor because S2 = S1 gives us the additional intensive variable value that we need to fix the state of the effluent stream. Then we can calculate the actual work from the isentropic work using the isentropic efficiency. | ||||||||||||||
We need to know the actual entropy of the effluent in order to determine the reversible work for the turbine. We can use the actual work and the 1st Law to determine the actual enthalpy of the effluent. This gives us the second intensive property we need in order to interpolate on the Ideal Gas Property Table for air to evaluate So2. Once we know So2, we can use the 2nd Gibbs Equation to determine S2. Use S2 to evaluate WS,lost. The 2nd Law Efficiency is the ratio of the actual work to the reversible work that we found in part (a). | |||||||||||||||
Given: | hs | 72% | Find: | Ws,act | ??? | kW | |||||||||
P1 | 105 | kPa | Ws,rev | ??? | kW | ||||||||||
T1 | 310 | K | Ws,lost | ??? | kW | ||||||||||
P2 | 4250 | kPa | hii | ??? | % | ||||||||||
mdot | 1.4 | kg/s | |||||||||||||
Tsurr | 310 | K | |||||||||||||
Diagram: | The diagram in the problem statement is adequate. | ||||||||||||||
Assumptions: | 1 - | The compressor operates at steady-state. | |||||||||||||
2 - | The compressor is adiabatic. | ||||||||||||||
3 - | Changes in kinetic and potential energies are negligible. | ||||||||||||||
Equations / Data / Solve: | |||||||||||||||
Part a.) | The isentropic
efficiency of an adiabatic compressor is defined by: |
![]() |
Eqn 1 | ||||||||||||
We can solve Eqn 1 for WS,act : | ![]() |
Eqn 2 | |||||||||||||
Because we assumed air is an ideal gas and we know T1 , we can look-up H1 in the Ideal Gas Property Table for air. | |||||||||||||||
H1 | 97.396 | kJ/kg | |||||||||||||
Next, we need to determine T2S so we can look-up H2S in the Ideal Gas Properties Table for air. | |||||||||||||||
We can either use the Ideal Gas Entropy Function or the Relative Pressure Method. | |||||||||||||||
Method 1: Use the Ideal Gas Entropy Function. | |||||||||||||||
The 2nd Gibbs Equation for Ideal Gases in terms of the Ideal Gas Entropy Function is : | |||||||||||||||
![]() |
Eqn 3 | ||||||||||||||
We can solve Eqn 3 for the unknown SoT2 : | ![]() |
Eqn 4 | |||||||||||||
We can look up SoT1 in the Ideal Gas Property Table for air and use it with the known pressures in Eqn 4 to determine SoT2 . | |||||||||||||||
R | 8.314 | J/mol-K | SoT1 | 0.038914 | kJ/kg-K | ||||||||||
MW | 28.97 | g/mol | SoT2S | 1.1010 | kJ/kg-K | ||||||||||
Now, we can use SoT2 and the Ideal Gas Property Table for air to determine T2 and then H2 by interpolation : | |||||||||||||||
T (K) | So (kJ/kg-K) | Ho (kJ/kg) | |||||||||||||
840 | 1.0850 | 658.42 | |||||||||||||
T2S | 1.1010 | H2S | T2S | 852.19 | K | ||||||||||
860 | 1.1112 | 680.67 | H2S | 671.98 | kJ/kg | ||||||||||
Now, we can plug values back into Eqn 2 to get : | Ws,act | -798.04 | kJ/kg | ||||||||||||
The rate at which work is actually done can be determined using : | ![]() |
Eqn 5 | |||||||||||||
Ws,act | -1117.2 | kW | |||||||||||||
Method 2: Use the Ideal Gas Relative Pressure. | |||||||||||||||
When an ideal gas undergoes an isentropic process : | ![]() |
Eqn 6 | |||||||||||||
Where Pr is the Ideal Gas Relative Pressure, which is a function of T only and we can look-up in the Ideal Gas Property Table for air. | |||||||||||||||
We can solve Eqn 6 For Pr(T2S), as follows : | ![]() |
Eqn 7 | |||||||||||||
Look-up Pr(T1) and use it in Eqn 7 To determine Pr(T2S) : | Pr(T1) | 1.145 | |||||||||||||
Pr(T2S) | 46.353 | ||||||||||||||
We can now determine T2S by interpolation on the the Ideal Gas Property Table for air. | |||||||||||||||
Then, we use T2S to determine H2S from the Ideal Gas Property Table for air. | |||||||||||||||
T (K) | Pr | Ho (kJ/kg) | |||||||||||||
840 | 43.852 | 658.42 | |||||||||||||
T2S | 46.353 | H2S | T2S | 851.95 | K | ||||||||||
860 | 48.039 | 680.67 | H2S | 671.71 | kJ/kg | ||||||||||
Now, we can plug values back into Eqn 2 to get : | Ws,act | -797.66 | kJ/kg | ||||||||||||
Then, use Eqn 5 to determine the rate at which shaft work is actually done : | |||||||||||||||
Ws,act | -1116.73 | kW | |||||||||||||
The two key equations for
determining lost and reversible work are : |
![]() |
Eqn 8 | |||||||||||||
![]() |
Eqn 9 | ||||||||||||||
Because the process is adiabatic, Eqn 9 simplifies to : | ![]() |
Eqn 10 | |||||||||||||
We can determine S1 from the Ideal Gas Property Table for air but we still need to know S2. | |||||||||||||||
Since we know (Ws)act, we can determine H2,act by applying the 1st Law. The appropriate form of the 1st Law for this adiabatic, open system, operating at steady-state with negligible changes in kinetic and potential energies is : | |||||||||||||||
![]() |
Eqn 11 | ||||||||||||||
Solve Eqn 11 for H2 : | ![]() |
Eqn 12 | |||||||||||||
Plug numbers into Eqn 12 : | Method 1, So : | H2 | 895.43 | kJ/kg | |||||||||||
Method 2, Pr : | H2 | 895.06 | kJ/kg | ||||||||||||
We already obtained SoT1 from the Ideal Gas Property Table for air : | SoT1 | 0.038914 | kJ/kg | ||||||||||||
Now, we can interpolate on the Ideal Gas Property Table for air to determine T2 and SoT2 : | |||||||||||||||
T (K) | So (kJ/kg-K) | Ho (kJ/kg) | |||||||||||||
1040 | 1.3257 | 883.90 | Method 1 | Method 2 | |||||||||||
T2 | SoT2 | H2 | T2 | 1050.1 | 1049.7 | K | |||||||||
1060 | 1.3475 | 906.80 | SoT2 | 1.3367 | 1.3363 | kJ/kg-K | |||||||||
Now, we apply Eqn 3 to
the actual turbine to evaluate DS : |
![]() |
Eqn 13 | |||||||||||||
Method 1 | Method 2 | ||||||||||||||
DS | 0.23571 | 0.23535 | kJ/kg-K | ||||||||||||
Now, plug values back into Eqns 10 & 8 to get : | Method 1 | Method 2 | |||||||||||||
Ws,lost | 102.30 | 102.14 | kW | ||||||||||||
Ws,rev | -1015.0 | -1015.1 | kW | ||||||||||||
Part b.) | The 2nd Law Efficiency of a turbine is defined as: | ![]() |
Eqn 14 | ||||||||||||
Method 1 | Method 2 | ||||||||||||||
Plugging values into Eqn 14 gives us: | hii | 90.84% | 90.90% | ||||||||||||
Note: We could have determined the reversible work from : | ![]() |
Eqn 14 | |||||||||||||
Verify: | Check the Ideal Gas Assumption: | ![]() |
|||||||||||||
V1 = | 24.55 | L/mole | V2 = | 2.05 | L/mole | ||||||||||
Air can be considered to be a diatomic gas, but the molar volume at state 2 is not greater than 5 L/mole. So, it is not accurate to treat the air as an ideal gas. | |||||||||||||||
Answers : | Part a.) | Ws,act | -1117 | kW | Part b.) | hii | 90.8% | ||||||||
Ws,lost | 102.3 | kW | |||||||||||||
Ws,rev | -1015 | kW |