2F-2 : | An Application of Equations of State | 6 pts |
---|
Steam is
contained in a 203 L
tank at 500oC.
The mass of steam in the tank is 12.4 kg. Determine the pressure in the tank using: a.) Ideal Gas EOS b.) Virial EOS c.) van der Waal EOS d.) Redlich-Kwong EOS |
|||||||||||||||||
e.) Compressibility
Factor EOS f.) Steam Tables. |
|||||||||||||||||
Read : | Not much to say here. | ||||||||||||||||
Given: | m | 12.4 | kg | V | 203 | L | |||||||||||
T | 500 | oC | 0.203 | m3 | |||||||||||||
Find: | P | ??? | kPa | ||||||||||||||
Assumptions: | None. | ||||||||||||||||
Equations / Data / Solve: | |||||||||||||||||
Begin by collecting all of the constants needed for all the Equations of State in this problem. | |||||||||||||||||
R | 8.314 | J/mol-K | Tc | 647.4 | K | ||||||||||||
MW | 18.016 | g NH3 / mol NH3 | Pc | 2.21E+07 | Pa | ||||||||||||
Part a.) | Ideal Gas EOS : | ![]() |
Eqn 1 | Solve for pressure : | ![]() |
Eqn 2 | |||||||||||
We must determine the molar volume before we can use Eqn 2 to answer the question. | |||||||||||||||||
Use the definition of molar volume: |
|
Eqn 3 | |||||||||||||||
Where : | ![]() |
Eqn 4 | |||||||||||||||
MW | 18.016 | g H2O / mol H2O | n | 688.28 | mol H2O | ||||||||||||
V | 2.95E-04 | m3/mol | |||||||||||||||
Now, plug values back into Eqn 2. | R | 8.314 | J/mol-K | ||||||||||||||
Be careful with the units. | T | 773.15 | K | ||||||||||||||
P | 2.18E+07 | Pa | |||||||||||||||
P | 21.8 | MPa | |||||||||||||||
Part b.) | van der Waal EOS : | ![]() |
Eqn 5 | ||||||||||||||
We can determine the values of a and b, which are constants that depend only on the chemical species in the system, from the following equations. | |||||||||||||||||
![]() |
Eqn 6 | Tc | 647.4 | K | |||||||||||||
Pc | 2.21E+07 | Pa | |||||||||||||||
a | 0.5530 | Pa-mol2/m6 | |||||||||||||||
![]() |
Eqn 7 | b | 3.04E-05 | m3/mol | |||||||||||||
Now, we can plug the constants a and b into Eqn 5 to determine the pressure. | |||||||||||||||||
P | 17.9 | MPa | |||||||||||||||
Part c.) | Redlich-Kwong EOS : | ![]() |
Eqn 8 | ||||||||||||||
We can determine the values of a, b and a, which are constants that depend only on the chemical species in the system, from the following equations. | |||||||||||||||||
![]() |
Eqn 9 | ![]() |
Eqn 10 | ||||||||||||||
Now, plug values into Eqns 8 -10 : | |||||||||||||||||
a | 14.25855 | Pa-m6-K1/2/mol2 | |||||||||||||||
b | 2.110E-05 | m3/mol | P | 18.0 | MPa | ||||||||||||
Part d.) | Compressibility EOS : | Given TR and the ideal reduced molar volume, use the compressibility charts to evaluate either PR or the compressibility, Z | |||||||||||||||
![]() |
Eqn 11 |
|
Eqn 12 | ||||||||||||||
TR | 1.1942 | ||||||||||||||||
Defiition of the ideal reduced molar volume : | ![]() |
Eqn 13 | |||||||||||||||
VRideal | 1.2110 | ||||||||||||||||
Read the Generalized Compressibility Chart for PR = 0 to 1 : | PR | 0.78 | |||||||||||||||
Z | 0.83 | ||||||||||||||||
We can use the definition of PR to calculate P : | ![]() |
Eqn 14 | |||||||||||||||
![]() |
Eqn 15 | ||||||||||||||||
P | 17.2 | MPa | |||||||||||||||
Or, we can use Z and its definition to determine P : | ![]() |
Eqn 16 | |||||||||||||||
P | 18.1 | MPa | |||||||||||||||
Part e.) | The Steam Tables provide the best available estimate of the pressure in the tank. | ||||||||||||||||
Because T > Tc, the properties of the water in the tank must be obtained from the superheated vapor table, even though the water is actually a supercritical fluid in this system. | |||||||||||||||||
At this point we can make use of the fact that we have a pretty good idea of what the actual pressure is in the tank (from parts a-d) or we can scan the spuerheated vapor tables to determine which two pressures bracket our known value of the specific volume. | |||||||||||||||||
In either case, we begin by converting the molar volume into a specific volume : |
|
Eqn 17 | |||||||||||||||
Using the MW of water from part (a) yields : | v | 1.637E-05 | m3/g | ||||||||||||||
v | 0.016371 | m3/kg | |||||||||||||||
The Superheated Steam Table gives us : | |||||||||||||||||
At P = | 20 | MPa | and | At P = | 40 | MPa | |||||||||||
v = | 0.014793 | m3/kg | v = | 0.005623 | m3/kg | ||||||||||||
We can determine the pressure in our tank by interpolation : | P | 16.56 | MPa | ||||||||||||||
P | 16.6 | MPa | |||||||||||||||
Verify: | No assumptions to verify. | ||||||||||||||||
Answers : | a.) | P | 21.8 | kPa | d.) | P | 18.1 | kPa | |||||||||
b.) | P | 17.9 | kPa | e.) | P | 16.6 | kPa | ||||||||||
c.) | P | 18.0 | kPa | ||||||||||||||
None of these Equations of State did very well because steam at high pressure behaves in a very non-ideal manner due to the high polarity of the molecules and the resulting stron electrostatic interactions. |